Effective source term in the diffusion equation for photon transport in turbid media.

نویسندگان

  • S Fantini
  • M A Franceschini
  • E Gratton
چکیده

The Green's function for the diffusion equation is widely used to describe photon transport in turbid media. We have performed aseries of spectroscopy experiments on a number of uniform turbid media with different optical properties (absorption coefficient in the range 0.03-0.14 cm(-1), reduced scattering coefficient in the range 5-22 cm(-1)). Our experiments have been conducted in the frequency domain, where the measured parameters are the dc intensity (I(dc)), ac amplitude (I(ac)), and phase (?) of the light intensity wave. In an infinite medium, the Green's function predicts a linear dependence of ln(rI(dc)) and ? on the source-detector separation r. Our measurements show that the intercepts of these straight lines predicted by the Green's function do not agree with the experimental results. To reproduce the experimental results, we have introduced an effective photon source whose spatial extent and source strength depend on the optical properties of the medium. This effective source term has no effect on the slopes of the straight lines predicted by the Green'sfunction at large values of r.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photon-transport forward model for imaging in turbid media.

A photon-transport forward model for image reconstruction in turbid media is derived that treats weak inhomogeneities through a Born approximation of the Boltzmann radiative transfer equation. This model can conveniently replace the commonly used diffusion approximation in optical tomography. An analytical expression of the background Green's function is obtained from the cumulant solution of t...

متن کامل

Photon migration in turbid media using a cumulant approximation to radiative transfer.

A photon transport model for light migration in turbid media based on a cumulant approximation to radiative transfer is presented for image reconstruction inside an infinite medium or a bounded medium with a planar geometry. This model treats weak inhomogeneities through a Born approximation of the Boltzmann radiative transfer equation and uses the second-order cumulant solution of photon densi...

متن کامل

Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory

Diffusion theory and similarity relations were used to calculate the optical diffuse reflectance of an infinitely narrow laser beam incident upon a semi-infinite turbid medium. The results were analyzed by comparison with the accurate results from Monte Carlo simulations. Because a large number of photon packets were traced, the variance of the results from Monte Carlo simulations was small eno...

متن کامل

Fluorescence-enhanced optical tomography in small volume: Telegrapher and Diffusion models

Small animal fluorescence-enhanced optical tomography has possibility for restructuring drug discovery and preclinical investigation of drug candidates. However, accurate modeling of photon propagation in small animals is critical to quantitatively obtain accurate tomographic images. The diffusion approximation is commonly used for biomedical optical diagnostic techniques in turbid large media ...

متن کامل

The photon transport equation for turbid biological media with spatially varying isotropic refractive index.

Using the principle of energy conservation and laws of geometrical optics, we derive the photon transport equation for turbid biological media with spatially varying isotropic refractive index. We show that when the refractive index is constant, our result reduces to the standard radiative transfer equation and when the medium is lossless and free of scattering to the well known geometrical opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 36 1  شماره 

صفحات  -

تاریخ انتشار 1997